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1. Introduction.

This paper is the next instalhnent in a series

(Sobieszczanski-Sobieski et al. 1998, Kincald et

al. 2000, 2001a,b and Plassman and Sobieszczanski-

Sobieski 2000) that has introduced a variant of the

Genetic Algorithm in which the reproduction mecha-

nism was modified to base it on the Ganssian prot)-

ability distribution, the bell curve. The bell-curve

based (BCB) heuristic procedure, first presented in

Sobieszczanski-Sobieski, Lat)a, and Kincald (1998),

is similar in spirit to Evolutionary Search strategies

(ESs) and Evolutionary Programming methods (EI's)

but has fewer parameters to adjust. In Sobieszczanski-

Sobieski et al. (1998) BCB was tested on a structural

design optimization prol)lem. The quality of solutions

generated were verified by comparing BCB sohltlons

to ones generated by a standard nonlinear program-
ruing technique. No attempt was made to analyze the

sensitivity of the BCB parameters. Kincaid, Weber

and Soi)ieszczanski-Sot)ieski (21)t)1)) provide a prelim-

hmry }nvestlgatiot_ into 1t(,'/3 parameter selection as

well as document improvements in the performance

of B('B. C.omputationa] results h)r continuous, dis-

crete and mixed conthmous and discrete design op-

timization prol)lems with constraints is reported. Fnr-

ther experiments with BCB for purely discrete op-
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timization problems is provided in Kincaid, Weber

and Sobieszczanski-Sobleski (2001a). Plassman and

Sobieszczanski-Sobieskl (2001)) implement and test a

parallel version of BCB for continuous optimization

problems.

The new contril)ution to t)e presented in this install-

ment is an extension to applications that encompass

a mix of continuous and quasi-discrete, as well as
truly-discrete applications. The extension combines

a definition of the distance between the parent designs

in the space that comprises discrete and continuous

variables with application to optimization of statically

indetermilmte structures in which the order of design
variables, e.g. the type of the cross-section, is essen-

tial. As expected, the algorithm that accommodates

the order information produces better results. In addi-

ti(m, we provide a comparison alh)wing sampling from
the tails of a discrete norlnal distribution versus a stan-

dard mutation scheme. Adding sampling from the tails

brings the continuous and discrete versions of BCB

into agreement. Moreover, given the same computing

resources, we show that sampling from the tails of the
discrete normal leads to higher quality solutions than

the standard genetic algorithm mutation approach.

2. Background Information.

To illustrate the connection I)etween BCB, ESs and
EPs we define our mutation, recombination, and se-

lection mechanisms in ES and EP terms. A new gen-

eration) in our approach is selected exactly the ,same

as a (It + It) ES. The recomtfinatlon mechanism is
similar to the extension of the intermediate recom-

binat.ion if the weights arc required to sum to unity.

Consider the linethrough two n-dlmensional parent
vectors /-;1 and t)2 selected for mating as in Figure

1. Figure I depicts a design space simplified to three
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dimensions (three design variables). First, determine

the weighted mean _1I of these two vectors where the

weights are given by the fitness of each parent. Next,

sample from a normal distribution N(0,_rm). The re-

suiting point/_ = _I + I/_ -/_1]* N(0, or,,) is the child,

prior to mutation. Note that in the extended version
of the intermediate recombination method when the

weights sum to one the unmutated child can lie any-

where on the line segment between the two parents. In

our approach, rather than picking weights arbitrarily,

the selection is governed by a normal distribution and

the fitness weighted average of the parents. Moreover,
/3 is not restricted to lie on the line segment PiP a-

Mutation ensues by first generating a radius v for an

n- 1 dimensional hypersphere. The radius is a realiza-

tion from a N(0,cr_). Typically (_r_ >> crm). Finally

the mutated child (_ is selected by sampling uniformly

on the surface of the T,- 1 dimensional hypersphere.

Since the child can lie anywhere on the surface the ef-

fect is similar to the rotated angle portion of an ES

or EP (in n- 1 rather than n dimensions). However,

we do not allow the hypersphere to be stretched (or

shrunk) along any of its axes as is the case for an ES

and El ) with non-identlcal rri. We call our procedure a

Belt-Curve Based evolutionary optimization algorithm

(BCB). Figure 1 is a 3-dimensional view of BCB.

In the case of constraints {or simple bounds) we

make two adjustments to BCB. If the point /_ vio-
lates a constraint then we select another candidate for

/3 until we obtain a feasible one. That is, we sample

from N(0,_) until g = M + It_ - P,I, N(0,_,,) is

feasible. If the child C that is produced is infeasible,

we translate the components of C to the closest con-

straint. For example, if all variables are to lie within
[1, 10] and if C = (0.8,2.0, 11.9), the child would be-
come (1.0, 2.0, 10.0).

in addition to the general description of BCB above

there are several specific details of note. Instead of

a roulette wheel selection scheme for selecting parents

we implement Baker's (1987) stochastic universal sam-

pling. In doing so we eliminate the natural bias, noted

by Baker (t 987), in roulette wheel selection. Although

BCB's performance may I)e improved if knowledge of

the underlying feasible region's topology is included in
the selection of the initial population, here we gener-

ate the initial population randomly (uniformly). There

are four parameters that must be chosen to optimize

a continuous unconstrained fimction: population size,

mmd>er of generations, (y.... and cr_. Kincaid et al.

(200 lb) provide an investigation into B('.B parameter
selection. We make use of their observations in this

manuscript.

First, scaling with respect to the design variables is

critical. BCB skews the search space towards design

variables of small dimension during recomt>ination.

Hence, the search space should be scaled so that all

design varial)les are of similar magnitude. Two normal

distributions drive BCB N(0, am) and N(0,_). As

we seek to sample along the line through the two par-
cuts,/1 and fie, we form fi = _+lf2- f,l*N(0,_,,).
Computational experience in Kincaid et al. (2001b)
showed that _,, should have a value near 1.0. In-

tuitively this makes sense since N(O, cr,_) serves to
inflate or deflate the value of the distance between the

parents. Next, to mutate /_ we sample uniformly on

the surface of an n - 1 dimensional hypersphere with

radius sampled from our second normal distribution,

N(0, _). Here, the value oft% is expected to be larger

than 1.0 to allow for the possibility of hyperspheres of

larger radii. Unfortunately there is no prol)lem spe-

cific data from which we can pick a baseline value for

the radius of this hypersphere. N(0, c*_) must repre-
sent both the unknown radius baseline as well as its

normal deviation. As expected, Kincaid eta]. (2(101b)

found that or,. should t)e much larger than c,..... Be-

low is an outline of the BC.B procedure for contimmus

optimization prol)lems.

P
2

r

M C

P
1

Fig. 1. BCB Geometrical Construct in 3D Space

Initialize BCB by choosing a population size, It, a max-

imum number of generations, num_g_ns, cr,. and c,_,.

Scale the search space so that all design variables are of
similar magnitude. Randomly generate t t individuals.

Repeat nunLgens times

I_epeat tt times
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Select two parents, 1"1 and P'2, from the

current population using Baker's stochastic

universal sampling.

Calculate _ the fitness weighted mean

of the parents.

(;e.erate g = + -- P,I * N(0,
the child prior to mutation.

(If I7 violates a constraint sample from

N((),c%) until a feasible/_ is found.)

Generate C the mutated child.

Sample from N(0, cr_) to determine r, the

radius of a hypersphere centered at I)'.

Sample uniformly on the surface of this

hypershere. The resulting point is (=.

(If C is infeasible we translate the violated

components of C to lie on the t)oundary

of the violated constraint.)

End Repeat
Keep best i t of parents and children as parents

of next generation

End Repeat

BCB was originally designed to find high quality so-
lutions to continuous optimization problems. In order

to solve mixed continuous and discrete varial)le opti-

mization BC.B must also be able to optimize purely

discrete problems as well. Our first experiment in this

regard was to simply round continuous BCB solutions

to the nearest discrete value (see Kincald et al. 2000)

for a 2-memt)er hub design problem. This approach

is known to work fairly well for quasi-discrete vari-

ables, that is, the variables have a continuous physical

interpretation but may be implemented only by choos-

ing from a discrete set of options. The thickness of

commercially available sheet metal is an example. In
contrast, the variables may be truly discrete. Choosing

t)etweeu propellers or jet engines in an aircraft design

optimization problem is an example. The rounding

approach is totally inapplicable for truly discrete vari-

ables. Consequently, in the truly discrete setting there

is no obvious analog to a line segment connecting par-

ents. Defining an underlying geometry via a lattice

is possible but our approach is to define an artificial

neighborhood structure.

The notion of a neight)orhood we use rests on a def-
inition of distance hetween objects in a finite set. This

idea is not new. In particular, Kelly et al. (1994) u_

a similar measure in their diversification strategies in

tabu search. To the best of our knowledge there is

no reference to this in the evolutionary strategy llt-

erature. To he generic, consider an example of three

objects, each possessing three attributes. Figure 2b

provides such an example in which the attributes are

letters chosen from a list of six letters (Figure 2a).

Initially we assume that the order of the attributes in

the object does not matter. We will remove this as-

sumption later. Now, consider object 3 and ask the

question: "tlow many letters must be changed to make

3 identical to o?". By inspection, the answer is three.

The answer to the same question for ";..is two. Finally

to change _, to 3 we need change only one letter. Ob-

vioasly, the above questions may be reversed without

changing the answers. That is, the transformation of

c_ to ? also requires two letter changes. We now place

(_, 3, and ";.on a numerical axis (Figure 2c). Choosing

c_ arbitrarily as a reference at 1), then the locations of

";,and/_ are 2 and 3 respectively. That is, each of these

objects is placed at the nmnt)er of attribute changes

required to transform it to the reference object (o in

this case).

a) ABCDEF

b) ,,= ,ABE ={DCF-

c) (x

F ¸

7= CAF!

7

r

2 3

Figure 2. I)istance between members of a discrete set

A definition of a distance t)etween objects that are

identified by attributes chosen from a finite set emerges

from the example in Figure 2.

• The distance hetween two ohjects characterized

by discrete attributes drawn from the same set is

equal to the number of attributes that must be

changed in one object so that it is identical to the

second object in terms of its attributes.

The distance defined above might also be interpreted

as the dissimilarity between two objects. In this inter-
pretation, the null distance corresponds to a complete

similarity (identical attritmtes). The maximmn dis-

tance, the total number of attributes in the object

(three in Figure 2), signifies a complete dissimilarity

(no attributes in common). Note that the proper-

ties of the similarity and dlssimi]arity are mutually

complimentary their measures add to the numl)er of
attributes.

Now consider the casc when the order of attrit>utes

in the object does matter. To illustrate the conse-

quence, consider a transformation of "_.to o. In addi-
tion to replacing the letters (' and F with B and E

respectively, one needs to change the position of A in 2,

from position 2 to position 1. Counting the two letter

replacements and the position exchange results in 2' to

o distance of 3. In addition to constructing the sin-

g]e transformations, such as _;, into o, we also want to
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sample among all the objects at a prescribed dlstance

between the two objects. Kincaid et al. (2000) ex-

perimented with discrete problems in which the order
of the attributes does NOT matter. In Section 4 we

will provide compntational experience for problems in
which the attribute order does matter.

The tacit assumption in the previous examples is

that the mnnber of attribute positions in each object

are the same. Although this need not be the case in

general, it will be true for the problems we study here.
Given the aforementioned distance definition we can

now formally describe a discrete version of BCB. We

describe the case when the positions of the attributes

do matter since that is easier to explain. The symbols

P1, P2, and (? (two parents and the resulting child)

correspond to o, j_, and "? respectively in the previous

discussion. Let k denote the numt)er of attribute posi-

tions in P1 and Pz, let u denote the number of possible

attrilmte values (1_ > k), and let r denote the numl)er
of attributes that are dissimilar between P1 and Pa.

* Step 1. ['lace P1 and P2 on a numerical axis rang-

ing from 0 to the nnmber of dissimilar components

between Pj and Pz. Without loss of generality, let

P1 serve as the reference point at 0 on this nmner-
ical axis.

• Step 2. Create a truncated discrete normal dis-

tribution on the axis described in step 1. The

distribution is centered on a point M whose lo-

cation may be at the midpoint between PL and

P: or it may be shifted toward the fittest parent.

The distribution is truncated at P1 and P2- The

parameter _,_ nmst be chosen by the user.

* Step 3. Let _ denote the sample value chosen from

the distribution in step 2. Place the child B at a
distance ¢ from P1 on the numerical axis between

Pt and I_.

• Step 4. Reorder the attributes of P1 and P'z ,so

that the k - r attributes in common appear in

the last k - v attribute positions. Assign the re-

maining r attributes of P_ and P2 randomly to

the first r attribute positions respectively within

/)1 and P'z. Label these reordered parents /51 and
/52. Construct a child B of P1 and P2 as follows.

First, set B = /52. Then re-assign the attributes

contained in the first r - ¢ positions of Pl to the
first v - _ attribute positions of B.

,, Step 5. Construct the final child C from B by

randomly nmtating B. That is, with a small prob-

ability of occurrence, p, randomly (uniformly) re-
place any attribute of B with any of the allowed
attribute values.

In addition to experiments in which the attril)ute

order does matter we will also explore the utility of

the truncated normal. In order to make the discrete

version of BCB closer in spirit to the continuous one it

would be nice to replace Step 5 above with sampling
in the tails of the discrete normal distribution.

Lastly, we describe how these two algorithms in-
teract when we solve mixed continuous and discrete

optimization problems, we treat the discrete and con-

timu)ns variables as a single collection of decision vari-

ables. Suppose that onr design structure has b beams,

and that there are t possible beam types. Further sup-

pose that the cross-section of each beam type can be

described tff n continuous variables. Then our solu-
tion is a vector _ that is a concatenation of b vectors

of the form

(;rll,-.-,Xlrt;.r21,-.-, X2n;...; Xtl,..., Xtm)

with one such vector for each beam. Here, Xij repre-
sents the jth cross-section decision variable of the ith

beam type. Thus, a solution will describe not just b

beams, but b,t beams. A second vector (Yl, Y2, -.., yb)

indicates the chosen set of beam types, where Yi is in

the integral range of [1, t]. Hence, the value of yl in-

dicates which beam type we have chosen for beam i.
Given two parents of the form described above, con-
tinuous BCB recombines the 2"s and discrete BCB

recombines the ff's. For further information on other

possible ways to solve mixed continuous and discrete

optimization problems the interested reader is referred

to Kincaid et al. (2001a).

3. Refinements to Discrete BCB

In this section we test certain features of discrete

BCB. First we examine the two choices for M de-

scribed in Step 2 of the algorithm. That is, should M

be the the midpoint between P1 and P2 or should it be

shifted toward the fittest parent. Second, we compare

the performance of discrete BCB as described above
to a new version of di_rete BCB in which Step 5 is re-

placed by allowing sampling to occur in the tails of the

discrete normal distribution defined in Step 2. That

is, the discrete normal distribution defined in Step 2 is
no longer truncated. In addition we will limit our at-

tention to problems in which the attribute order does
NOT matter.

The test cases for these experiments is a constrained

mixed continuous and discrete weighted shape selec-

tion optimization problem. We wish to select 5 shapes

from a list of three (circle, triangle, and square) or

more geometrical shapes. The five positions are num-

1)ered in order 1 through 5. The goal is to choose 5

shapes (possibly with repeats) and the dimensions of

those five chosen shapes to minimize the total weighted

sum of the perimeters. Each chosen shape's perimeter

is weighted by its position in the list: the first shape
in the list is weighted by 5, the second by 4, the third
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by 3, and so on. The continuons variable is the radius

(r) for the circle, the length of a side (s) for the square

and the length of the base (b) for a right isosceles tri-

angle. The constraints are as follows. The total area

must be greater than 100 units and each continuous

variable has a lower bound of 1.0 and an upper bound

of 10.0. Tile opthnal set of shapes is 4 triangles and 1

circle with an objective value of 82.9. The circle has

the smallest perhneter to area ratio (2/r) and is cho-

sen for position 5 with r just large enough so that 100

- (stun of the 4 triangles area) is satisfied. Small tri-

angles are chosen for the remaining 4 shapes since its

perimeter to area ratio is largest, in an attempt to un-

derstand how BCB scales with respect to tile mmlber

of discrete variables we solve the position dependent

shape prol)lem with the addition of regular polygons

with 5, 6, 8, and 10 sides.

Table 1. Using fitness: 15 reps, 20,000 solutions,

0.04 mutation

#
.qhapes

3

4

5

6

7

Mean Min Max Freq Opt

Best Ot, j Best Obj" _est Obj" Shapes

85.9 82.9 89.1 .5/1

87.4 94.3 2/1

89.7 95.3 0/1

91.2 97.1 0/15

91.0 97.6

82.9

l 8.5.3

8.5.1

8.5.2 0/15

Table 2. Using midpoint: 15 reps, 20,000 solutions,

0.04 mutation

#
Shapes

3

4

.5

(;

7

Mean Min Max Freq Opt

Best Obj Best Obj Best Obj Shapes

8.5.7 82.9 89.4 6/15

86.1 82.9 90.4 .5/15

89.1 83.7 93.2 1/1.5

93.0 85,7 98.1 0/15

90,8 83.9 96.7 0/15

In the above experiment the fitness weighted mean

in Step 2 of the algorithm does not perform quite as
well as simply using the midpoint of Pt and P2. The

midpoint approach has tile min and mean best ob-

jective values in 4 of the 5 cases and identifies more

optimal shapes (12) than the fitness approach (7).

Even so the appeal of making use of parent fitness has

led us to contim,e with its use. One reason for doing

so is to make the continuous and discrete implementa-

tions of BCB as similar as possible.

The next set of experiments seeks to compare the
truncated discrete normal with mutation versus a dis-

crete normal distribution in Step 2 of the algorithm.

The table below summarizes these experiments for the

discrete normal distribution which can be compared

against the reslflts in Tahles 1 and 2. Here we see that
the use of tails for the discrete normal is beneficial. 26

optimal shapes are found with tile tails and only 12

with the nmtation approach. In addition, the mean

best objective value for the tails approach wins in 4 of

the 5 cases.

Table 3. Discrete Normal with tails: 15 reps,

20,000 solutions

#
_;l_apes

3

4

.5

6

I

Mean Min Max Freq Opt

Best Obj Best Obj Best Obj Shapes

84,0 82.9 88.4 13/1.5

85.6 82.9 90.6 7/1:5

89,0 82.9 99.9 5/1.5

91.3 86.0 99.9

91.8 82.9 99.6

0/1_
1/1.5

4. Hub Design Problem

Our standard test problem in Sobieszczanski-

Sobieski et al. (1998), Kincald et al. (200{I) and

Kincaid (2001) has been a minimum weight (volume)

design of a hub structure also found in Bailing and

Sobieszczanski-Sobleski (19!)4). Each member of the

hub structure is an l-beam rigidly attached to the hub

and to the wall, forming a two-dimensional, wheel-

wilh-spokes pattern whose two-beam version is illus-

trated in Figure 3. The structure load has three com-

ponents, horizontal and vertical concentrated forces,

and a concentrated moment, all acting on the hub

in lhe plane of the structure. Various loading cases

(henceforth called "loads") are formed from the above

load components. Three loading cases are applied to

a 6-beam structure, and two loading case are used in

case of a 20-beam structure to reduce the computing

elapsed time. The bemn cross-sectional dimensions are

the design variables, and the constraint functions re-
flect the material allowable stress as well as overall

and local truckling. The top and bottom flanges of

the l-beam are not necessarily of the same dimensions.

Hence, the cross-sectlon of each l-beam requires six

design variables. Figure 3 illustrates a 2-member hub

problem. Additional details may be found in Padula

el al.(1996). The utility of the hub structure as a test

case stems from its ability to be enlarged by adding
as many members as desired without increasing the

dimensionallty of the load-deflection equations. These

remain 3 by :/equations for a 2-dimensional hub strnc-

tnre regardless of tile ntnnber of members. While

analytically simple, the hub structure design space is

complex because the stress, displacement and Imck-

ling constraints are rich in nonlinearities and couplings

among the design variables. Our goal is to extend this

problem so that, in addition to choosing the dimen-
sions of the beams so as to minimize the volume of the

hub frame, we would also select (among a finite list)

the Imam type.

As a first step in this direction we consider 3 beam

cross-section types -I, circular, and triangular. In all

cases the overall length of the beam is held constant

amongst the cross-section types. The l-beam has 6

design variables; the circular beam has 2 design vari-
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ables; and the triangular beam has 3 design variables.

Our first experiment is with a 6 beam 3 load hub de-

sign problem. Each beam has tile same nominal length

of 12(I.(1 and tile following BCB parameters values:

Fy = 36 N

.......!_++-.¥

"gi +'; _T_

Figure 3. 2-member huh, description

population size : 20

number of generations : 1250

replications : BO
PENALTYI : 2000.0

PENALTY2 : 4000.0

fitness-related mean for discrete

normal number of swaps

As a benchmark we _rce mixed BCB to choose all

I-beams and obtain the _)l]owing results:

Order NOT Order

Important hnportant
min vol 576.62 554.51

mean vol 687.81 681.[12

s.d. vol 63.63 126.33

The following table lists the results when mixed BCB

is allowed to choose one of three possible shapes (l-
beam:l, circle:2, or triangle:3) for each of the six beams

when the order does not matter in computing the dis-
tance between discrete components.

Table 4: Frequencies of designs chosen

(order does not matter)

l)esign #
1,1,1,2,2,2 1 456.90

1,1,2,1,2,2 1 711.10
1 2,1 3,2,2 1 448.84

1,2,2,2,1,2 1 404.51

1 ") '),','_ '_ ") 383 99

1,3,2,2,2,2 1 429.78

1,3,2,2,3,2 1 464.50

'_ 1 1 ')'_ '_ 1 416.85

'2,1,2,2,2,2 1 462.211
2,1,2,2,2,3 1 592.75

2,1,2,3,2,2 l 447.83

'__,1,3,2,2,1 1 477.77
'_ +_'_ + '_ "_ 1 417.72

2,2,2,1,3,2 1 464.91

2,2,2,2,1,1 1 ,161.7.(t

2,2,2,2,1,2 1 383.2(1

•_ "_"_9;) 1 1 471 11

'_ "),'_")"_'_ 8 361.91

2,2,2,2,2,3 1 426.61

2,2,2,2,3,2 '2 401.99

2,2,2,3,2,1 l 533.66

2,2,2,3,2,2 2 416.74

2,2,3,2,2,2 '2 401.51

2,3,2,2,2,2 2 424.75

2,3,2,2,2,3 1 576.26
2,3,3,2,2,3 1 541.52

2,3,3,3,2,2 1 5(12.52

3,1,2,2,2,2 1 489.31

3,1,3,3,2,2 1 541.69

3,2,2,2,1,2 1 .429.1

3,2,2,2,2,2 7 401.49
'_ '{ ")" " '_ 1 527.12

Min Mean Std Dev
Best Vol Best Vol Best Vo]

456.9(I

711.10

,148.83

4(14.51

383.29

429.78

464.50

416.85

462.20

592.75

447.83

477.77

417.72
464,91

461,79

383.20

471.11

365.98

426.61

422.61

533.66

447.42

401.51

426.$9
576.26

541.52

502.52

489.31

541.69

429.18

401.49

527.12

0.001

10.51

20.62

30.68

0.002
2.14

1.65

The case in which the order of matching elements in

the parents matters leads to slightly better results.

This trend has been borne out in all of computational

experience although the order is important approach

seems to require more generations to converge. We ex-

pect this is due to the larger neighborhood of fea_sible
solutions when order counts.

With the penalties shown above, the maximum con-
straint violations occurred as follows:

Order NOT Order

hnportant hnportant
mean max. violation -0.00039 -0.0085

s.d. max. violation 0.0027 0.0596

Best Designs:

2,2,2,2,2,2 with a minimum volume of 361.91

3,2,2,2,2,2 with a minimum volume of 401.49

One of these two designs was selected

30_ of the time

The following table lists the results when mixed BCB
is alh)wed to choose one of three possible shapes (I-

beam:l, circle:2, or triangle:3) for each of the six beams

when the attribute order does matter in computing the

distance between discrete components.
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Table 5: Frequencies of designs chosen

(order does matter)

Design #

1,2,2,1,2,2 1 42l.(17

">" '_ "_"_ 3 383.19

"L"_1 '_ 1,2 1 404.90

2,2,2,1,1,1 1 479.39

2,2,2,1,2,2 3 399.77

2,2,2,2, [,2 '_ 386.9T

2,22,2,1,3 "2 434.42

•).)._.)._9 9.) 361.9l

2,2,2,2,2,3 1 :117..54

7,2 2,3,2, l 1 527.49

2,2,2,3,2,2 3 407.82

2,2,2,3,3,2 1 451.82

2,2,3,2,2, 1 I 441.57

,,_,.')') 3,3,_,.'_"_ 1 517.07

2,3,1,3,2,2 1 538.54

•) q "_ 1 ._ ') 1 48;-).36

9 3 '_ ") "_"_ l 410. fi5

'_ '> '_ ") ") "_ 1 444.29

3, 1 ") " ") ") 1 476.33

o ._ ._ ._ ._ ._ 1 423.71

Min Mean Std l)ev

Best Vol Best. Vol Best Vol

421.07

383.44

404.90

479.39

477.93

436.16

488.10

362.00

412.54

527.49

427._2

451.82

441.57

517.07

538.54

485.36

410.fi5

444.29

476.33

423.71

441.13

0.2l

61.39

49.19

53.67

O. 15

14.48

following results are obtained when mixed 13CB is al-

lowed only to choose I-1)eams:

Order NOT Order

hnportant hnportant

rain. vo]. 17089.629 17112.098

mean vol. 18984.661 17869.6119

s.d. vol. 2051.516 1285.047

The use of the "order does matter" definition of dis-

crete distance yields results that are only slightly bet-

ter with respect to the mean but are significantly

better with regard to the variance in the results.

The following table lists the results when mixed BCB

is allowed to choose one of three possible shapes (l-

beam:l, circle:2, or triangle:3) for each of the six

])ealns.

Order NOT Order

hnportant hnportant

rain. vol. 12865.855 13394.107

shapes 2,2,1,3,2,2,1,3,2,2, 2,2,2,2,2,2,1,3,2,1,

2,3,2,1,1,2,2,2,2,1 2,2,2,3,3,2,2,2,2,2

mean vol. 16140.339 14278.798

s.d. vol. 1694.326 1(17(I.669

Here we can see a significant improvement with the use

of t he "order does matter" discrete distance definition.

Best Designs:

2,2,2,2,2,2 with a minimum volume of 361.91

1,2,2,2,2,2 with a minimum volume of 383.19

2,2,2,1,2,2 with a minimum volume of 386.97

2,2,2,1,2,2 with a minimum volume of 389.77

One of these four designs was chosen

60_ of the time.

With the same penalties as before, the maximum con-

straint violations occurred as follows:

Order NOT Order

Important hnportant

mean max violation -0.076 -0.0619

s.d. max violation 0.0849 0.06

The al)ove tahles indicate the trends we have seen in

variety of problem instances. The "order does matter"

approach results in fewer, higher quality solutions and

the distribution of final solutions is tighter (smaller

variance) with a higher quality mean.

Next, we consider a 20 |)earn 2 load hut) design

problem, Again all 20 t)eams are of the same non)i-

hal length. The same BCt_ parameters were used as

in the previous experiment except that Penalty I was

increased to 10,000 and Penalty 2 was increased to

21),1)I)0. With these penalties, the program had a con-

dition added that the maximum constraint violation

must he less than 0.02. Again, as a benchmark, the

Next we increase the number of choices fl)r the heam

type (the only discrete variable) from 3 to 6. The

shape choices for each beam are I :I, 2:circle, 3:triangle,

4:rectangle, 5:1;, or 6:C. This prot)lem was run with

all 6 beams having the same nominal length and the

following BCB parameters:

population size : 20

number of generations : 1250

replications : 50

PENALTY1 : 2000.0

PENALTY2 : 4000.0

fitness-related mean for discrete

normal number of swaps

The experiment was first run _r the ease when "'order

does NOT matter" and, of the 50 replications, only

the fi)llowing solutions were repeated:

Design #

l,_9,'__,_'_,'__,_'_ 9_ 383.22

")_,_','_,'),6,,,."_ "). 456.41

Min Mean St d l)ev

Best Vol Best Vol Best Vo]

383.::N 0.12

467.58 11.17

The range of values h)r all the solutions was 361.91

(2.2,2,2,2,2) to 977.27 (5,6,4,5,2,1) with an average

value of 5?,3.11 and standard deviation of 119.91.

The same experiment was repeated for the case when

order does matter and, of the 50 replications, only the

following solutions were repeated:
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Mean Std Dev

Best Vol Best Vol

Min

Design # Best Vol

2,2,1,2,2,2 2 3_3.20

2,2,2,2,2,2 6 361.91

2,2,2,2,5,2 2 395.20

2,2,5,2,2,2 2 395.20

383.32

:176.9:1

415.09

.t49.81

1t.t2

33.22

19.89

54.61

Tile range of vahms for all tile solutions was 361.91

(2,2,2,2,2,2) to 1322.02 (5,2,6,2,2,2) with an average
value of 526.35 and standard deviation of 148.02. If

the single outlier value of 1322.02 is discarded, the

maximum value is 701.03 (1,2,2,2,3,5)and the average

value over the 50 replications is 507.85 with a standard

deviation of 85.75. In this manner we have a tighter

range of values then with the "order does not matter"
definition of distance.

Next we consider the 20 beam 2 load problem and

use the same BC.B parameters as in our previous 20
beam 2 load case except that 6 shape choices (1:I,

2:circle, 3:triangle, 4:rectangle, 5:I7, or 6:C). are now

available. This yielded the following results over 2(I

replications:

Order NOT Order

Important Important
min. vol. 14949.14,5 14359.097

shapes 2,4,4,2,2,6,1,2,2,2, 4,2,4,5,1,1,4,2,2,4,
6,2,2,3,2,3,4,6,4,5 2,3,3,2,5,4,3,2,2,6

mean vo]. 16827.441 15803.128

max. vol. 19001.340 17734.045

shapes 1,3,4,6,4,6,5,6,2,6, 4,5,4,5,4,1,2,1,2,6,
5,2,2,5,4,4,2,2,1,1 2,2,1,2,2,1,5,2,6,1

s.d. vo]. 1233.146 901.371

The use of the "order does matter" definition for dis-

crete distance yields results that are both slightly

better with respect to the mean and less spread out

(smaller standard deviation) over the multiple runs.

5. Concluding Remarks

with pattern search? Pattern search is a derivative free

local search procedure that has been shown to perform

well on a variety of nonlinear optimization problems

(see I,ewis et al. 2000 for details), l)revious work

(Kincaid et al. 2001b) has shown that BCB coupled

with local search procedures works well for the contin-

uous version of BCB. The reasoning is that BC.B does

a good job of identi_'ing valleys of interest but takes

too long getting to the bottom. Will the same be true
in the mixed continuous and discrete case. 9

Our work here focused on a small scale structural op-

timization problem for testing the performance of dis-
crete BCB. It is natural to wonder if discrete BCB will

stand up against other competitors talm search, sim-

ulated annealing, and traditional genetic algorithms.

A potential scalable problem venue to test this conjec-

ture is the the NK-landscape model. The NK mode]

is due to Kauffman (19_9) and is a random energy

model similar to a spin glass. It is designed to be tune-

able. That is, as K increases the landscape becomes

more rugged. When K = [} a highly correlated land-

scape with a single peak results. At the other extreme,

when K = N - 1 (where N is the number of decision

variables) a completely uncorrelated landscape results

with very many peaks.
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